Cost-Efficient Trace Analysis of Mercury with Analytik Jena’s ‘mercur’

9 Jul 2013
Sarah Thomas
Associate Editor

The ‘mercur’ from Analytik Jena UK is a compact system specially optimized for the complete, cost-efficient determination of mercury traces to the ng level. The instrument guarantees mercury analyses in accordance with EPA 1631, EPA 245.1, EPA 245.2, EPA 245.7, EN 1483, EN 12338, EN 13806 and EN 13506.

The ‘mercur’ is available in atomic fluorescence (AFS), atomic absorption (AAS) and combined (DUO) versions. With excellent detection limits and a wide linear measuring range, atomic fluorescence spectrometry is often the method of choice in mercury trace analysis. However, atomic absorption has its advantages for samples in difficult matrices because of its high tolerance towards interferences. The DUO offers the benefits of both techniques, with simple software-controlled change between the two methods.

The mercur utilizes the cold vapor technique to convert mercury to the gaseous state by reduction of the dissolved cation with SnCl2. The mercury is therefore separated from the background matrix before transfer to the analysis cell, to reduce interferences and matrix effects. Even further enhancement can be made using simple or cascade enrichment methods. Here cascade enrichment prevents the quenching effect. Enrichment times can be varied to match complex sample matrices or the expected mercury concentration range.

An optional autosampler makes the ‘mercur’ highly automated and easy to operate, with a high sample throughput. Fast analysis is achieved by using continuous flow operation with or without the autosampler plus the unique FBR routine (Fast Baseline Return), which minimizes measurement time by increasing argon flow. Automated, intelligent gas-liquid control ensures minimum reagent consumption and short measurement times in various operating modes.

The system is extremely safe through the use of a bubble sensor. If a liquid threatens to spill into the system, this sensor causes the valves to close, and the liquid is automatically transferred to the waste container. Positioned between the gas-liquid separator and a specially optimized drying membrane, it protects the gold collector and the measurement cell against contamination.

Links

Tags